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CIRCUMSCRIBED QUADRILATERALS

VOCABULARY, PROPERTIES & EXERCISES

1. QUADRILATERALS INSCRIBED IN A CIRCLE

Regular geometric objects can be always imaged together with their inscribed or circumscribed

circles. Another type of objects inscribed in a circle are the so - called cyclic quadrilaterals.

This means that the vertices are lying on the same circle.

Theorem 1 The quadrilateral ABCD is a cyclic quadrilateral if and only if the sums of the

opposite angles are equal.

2. CIRCUMSCRIBED/TANGENTIAL QUADRILATERALS

A quadrilateral is called tangential if it has an inscribed circle which touches all the

sides of the quadrilateral.

Theorem 2 A convex quadrilateral is tangential if and only if the sum of the opposite sides

are equal.

3. EXERCISES

Exercise 1 Draw a rhombus around a circle of area 100, so that the rhombus has an angle

30◦. Calculate the area of the rhombus.

Exercise 2 [USAMO 1992] Let ABCD be a convex quadrilateral such that the diagonals

AC and BD are perpendicular, and let P be their intersection. Prove that the re�ections of

P with respect to AB, BC, CD, DA lie on a circle.

Exercise 3 [Bulgaria 1993] A parallelogram ABCD with an acute angle BAD is given.

The bisector of 6 BAD intersects CD at point L, and the line BC at point K. Prove that the

circumcenter of ∆LCK lies on the circumcircle of ∆BCD.



Exercise 4 (Ptolemy) Let ABCD be a convex cyclic quadrilateral. Proof that

|AB| · |CD|+ |BC| · |DA| = |AC| · |BD|.

Exercise 5 (Brahmagupta). Proof that if a cyclic quadrilateral has sides a, b, c, d and area

K, then

K =
√

(s− a)(s− b)(s− c)(s− d),

where s = a+b+c+d
2 is the semiperimeter.

Exercise 6 (Brahmagupta) Let ABCD be a cyclic quadrilateral with perpendicular diago-

nals. Then the line through the intersection of the diagonals and the midpoint of any side is

perpendicular to the opposite side.

Exercise 7 Brahmagupta's formula implies that the area of a cyclic quadrilateral depends

only on the lengths of the sides and not the order in which they occur. Can you demonstrate

this fact by 'slicing and dicing'?

Exercise 8 Use Ptolemy's theorem and the previous problem to give a formula for the lengths

of the diagonals of a cyclic quadrilateral in terms of the lengths of the sides.

Exercise 9 Let ABCD be a cyclic quadrilateral. Prove that the incenters of triangles ABC,

BCD, CDA, DAB form a rectangle.

Exercise 10 With the same notation, prove that the sum of the inradii of ABC and CDA

equals the sum of the inradii of BCD and DAB.
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