1.10 GEOMETRY ON THE PLANE (5)- ARC, SECTOR, ANGLES IN A CIRCLE - EXERCISES

Section A

1. In Figure 19.11, ADB is an arc of a circle with centre O, if $\angle ACB = 35^{\circ}$, find $\angle AOB$.

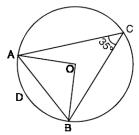


Fig. 19.11

2. In Figure 19.12, AOB is a diameter of a circle with centre O. Is $\angle APB = \angle AQB = 90^{\circ}$? Give reasons.

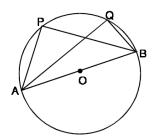


Fig. 19.12

3. In Figure 19.13, PQR is an arc of a circle with centre O. If $\angle PTR = 35^{\circ}$, find $\angle PSR$.

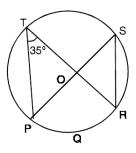


Fig. 19.13

4. In Figure 19.14, O is the centre of a circle and $\angle AOB = 60^{\circ}$. Find $\angle ADB$.

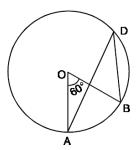


Fig. 19.14

Section B

1. In Figure 19.26, AB and CD are two equal chords of a circle with centre O. If ∠AOB = 55°, find ∠COD.

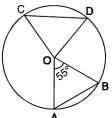


Fig. 19.26

2. In Figure 19.27, PQRS is a cyclic quadrilateral, and the side PS is extended to the point A. If ∠PQR = 80°, find ∠ASR.

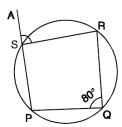


Fig. 19.27

3. In Figure 19.28, ABCD is a cyclic quadrilateral whose diagonals intersect at O. If $\angle ACB = 50^{\circ}$ and $\angle ABC = 110^{\circ}$, find $\angle BDC$.

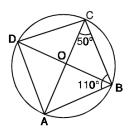


Fig. 19.28

4. In Figure 19.29, ABCD is a quadrilateral. If $\angle A = \angle BCE$, is the quadrilateral a cyclic quadrilateral? Give reasons.

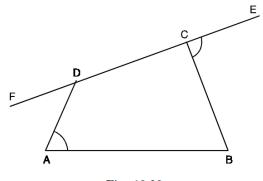


Fig. 19.29

Section C

- 1. A square PQRS is inscribed in a circle with centre O. What angle does each side subtend at the centre O?
- In Figure 19.30, C₁ and C₂ are two circles with centre O₁ and O₂ and intersect each other at points A and B. If O₁O₂ intersect AB at M then show that
 - (i) $\Delta O_1 A O_2 \cong \Delta O_1 B O_2$
 - (ii) M is the mid point of AB
 - (iii) AB⊥O₁O₂

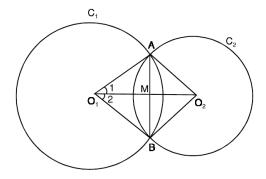


Fig. 19.30

3. Two circle intersect in A and B. AC and AD are the diameters of the circles. Prove that C, B and D are collinear.

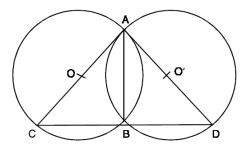


Fig. 19.31

[Hint. Join CB, BD and AB, Since $\angle ABC = 90^{\circ}$ and $\angle ABD = 90^{\circ}$]

4. In Figure 19.32, AB is a chord of a circle with centre O. If $\angle ACB = 40^{\circ}$, find $\angle OAB$.

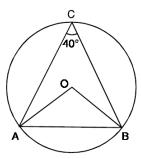


Fig. 19.32

5. In Figure 19.33, O is the centre of a circle and $\angle PQR = 115^{\circ}$. Find $\angle POR$.

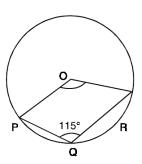


Fig. 19.33

6. In Figure 19.34, O is the centre of a circle, $\angle AOB = 80^{\circ}$ and $\angle PQB = 70^{\circ}$. Find $\angle PBQ$.

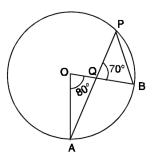


Fig. 19.34