1.2 SETS, INTERVALS

THEORY

1. SETS

(a) Basic Information

A set (or class) is an unordered collection of objects, which are arranged in a group, The set with any numbers use the symbol braces $\}$, and will be denoted by Capital letters A, B, C, \ldots..

The objects in a set are called the elements, or members of the set. A set is said to contain its elements. The objects comprising the set are called its elements or members and will be denoted by lower case letters a, b, c, \ldots. We write $a \in X$ when a is an element of the set X. we read a $a \in X$ as a is a member of X or a is an element of X or a belongs to X.

For describing sets there are two ways of describing, or specifying the members of, a set.

- by using a rule or semantic description:
$S=\{x: x \in \mathbb{Z} \wedge 5<x<15\}$ - which reads S is the set of x such that x is an integer and x is greater than 5 and less than 15.
- by extension - that is, listing each member of the set. An extensional definition is denoted by enclosing the list of members in curly brackets: $C=\{4,2,1,3\}, D=\{$ white, black, red, green $\}$.

Definition 1 The universal set U is the set containing everything currently under consideration. or all the sets under consideration will likely to be subsets of a fixed set called Universal Set.

Definition 2 A set which has no element is called the null set or empty set and is symbolized by \emptyset.
(b) Subsets and Set Equality

Definition $3 A$ Set \boldsymbol{A} is a subset of set \boldsymbol{B} if every element of A is also an element of B.

$$
A \subseteq B \Leftrightarrow \forall x \quad x \in A \Rightarrow x \in B
$$

Definition 4 Two sets A and B are equal if they have the same elements.

$$
A=B \Leftrightarrow A \subseteq B \wedge B \subseteq A
$$

Definition 5: A is a proper subset of B if $A \subseteq B$ and $A \neq B$. This is denoted by $A \subset B$.

$$
A \subset B \Leftrightarrow \forall x(x \in A \Rightarrow x \in B) \wedge \exists x(x \in B \wedge x \notin A)
$$

(c) Set Operations

Definition 6 The union of two sets A and B denoted $A \cup B$, is the set of all objects that are members of A, or B.

$$
A \cup B=\{x: x \in A \vee x \in B\}
$$

Definition 7 The intersection of two sets A and B denoted $A \cap B$, is the set of all objects that are members of A, or B.

$$
A \cap B=\{x: x \in A \wedge x \in B\}
$$

Definition 8 Two sets A and B are called mutually exclusive if their intersection is empty. Mutually exclusive sets are also called disjoint.

$$
A \cap B=\emptyset
$$

General intersection of several sets: $A_{1} \cap \ldots \ldots \cap A_{n}=\left\{x: x \in A_{1} \wedge \ldots . \wedge A_{n}\right\}$
Definition 9 The complement of a set \boldsymbol{A}, denoted by A^{c}, is the set of elements which belong to U but which do not belong to A.is defined by

$$
A^{c}=\{x: x \in U \vee x \notin A\}
$$

Definition 10 The difference between sets \boldsymbol{A} and \boldsymbol{B}, denoted $A-B$ is the set containing the elements of A that are not in B.

$$
A-B=\{x: x \in A \wedge x \notin B\}=A \cap B^{c}
$$

$A-B$ is also called the complement of \boldsymbol{B} with respect to \boldsymbol{A} (relative complement.) Similarly $B-A=\{x: x \in B \wedge x \notin A\}=B \cap A^{c}$

Definition 11 The symmetric difference between sets \boldsymbol{A} and \boldsymbol{B}, denoted $A \oplus B$ is the set containing the elements of A that are not in B or vice-versa.

$$
A \oplus B=(A \cup B)-(A \cap B)=(A-B) \cup(B-A)
$$

(d) Algebra of sets

- Idempotence: Union and intersection of a set with itself are
$A \cup A=A$
$A \cap A=A$
Associativity: If we have three sets A, B and C, then
$(A \cup B) \cup C=A \cup(B \cup C)$
$(A \cap B) \cap C=A \cap(B \cap C)$
- Commutativity: Union and intersection of two sets are commutative. Hence,
$A \cup B=B \cup A$
$A \cap B=B \cap A$
- Distributivity: In set theory, we have two distribution laws as
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
- Identity: If \emptyset is an empty set, A is any given set and U is universal set then:
$A \cup \emptyset=A$
$A \cap U=A$
$A \cup U=U$
$A \cap \emptyset=\emptyset$
- $A \cup A^{c}=U$
$A \cap A^{c}=\emptyset$
- $U^{c}=\emptyset$
$\emptyset^{c}=U$
- $\left(A^{c}\right)^{c}=A$
- De-Morgan's laws:
$(A \cup B)^{c}=A^{c} \cap B^{c}$
$(A \cap B)^{c}=A^{c} \cup B^{c}$

2. INTERVALS

(a) Proper and bounded:

Open: $(a, b)=\{x: a<x<b\}$
Closed: $[a, b]=\{x: a \leq x \leq b\}$
Left-closed, right-open: $[a, b)=\{x: a \leq x<b\}$
Left-open, right-closed: $(a, b]=\{x: a<x \leq b\}$
(b) Left-bounded and right-unbounded:

Left-open: $(a,+\infty)=\{x: x>a\}$
Left-closed $[a,+\infty)=\{x: x \geq a\}$

Left-unbounded and right-bounded:

Right-open: $(-\infty, b)=\{x: x<b\}$
Right-closed: $(-\infty, b]=\{x: x \leq b\}$
(c) unbounded at both ends (simultaneously open and closed): $(-\infty,+\infty)=\mathbb{R}$

