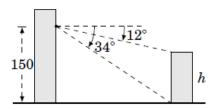
1.9. GEOMETRY ON THE PLANE (3) – TRIGONOMETRY – EXERCISES & PROBLEMS

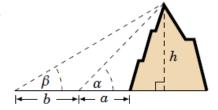
(based on Micheal Coral – "Trigonometry")

A. Trigonometry of the acute angle.

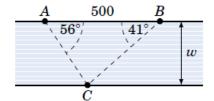
From a position 150 ft above the ground, an observer in a building measures angles of depression of 12° and 34° to the top and bottom, respectively, of a smaller building, as in the picture on the right. Use this to find the height h of the smaller building.



2. Generalize Example 1.12: A person standing a ft from the base of a mountain measures an angle of elevation α from the ground to the top of the mountain. The person then walks b ft straight back and measures an angle of elevation β to the top of the mountain, as in the picture on the right. Assuming the ground is level, find a formula for the height h of the mountain in terms of a, b, α , and β .



- 3. As the angle of elevation from the top of a tower to the sun decreases from 64° to 49° during the day, the length of the shadow of the tower increases by 92 ft along the ground. Assuming the ground is level, find the height of the tower.
- **4.** Two banks of a river are parallel, and the distance between two points A and B along one bank is 500 ft. For a point C on the opposite bank, $\angle BAC = 56^{\circ}$ and $\angle ABC = 41^{\circ}$, as in the picture on the right. What is the width w of the river? (*Hint: Divide* \overline{AB} into two pieces.)



 \mathbf{E}

5. A tower on one side of a river is directly east and north of points A and B, respectively, on the other side of the river. The top of the tower has angles of elevation α and β from A and B, respectively, as in the picture on the right. Let d be the distance between A and B. Assuming that both sides of the river are at the same elevation, show that the height h of the tower is



$$h \,=\, \frac{d}{\sqrt{(\cot\alpha)^2\,+\,(\cot\beta)^2}}\,.$$

B. Trigonometry of any angle

For Exercises 1-10, state in which quadrant or on which axis the given angle lies.

1. 127°

2. -127°

3. 313°

4. -313°

6. 621°

7. 230°

8. 2009°

9. 1079°

10. -514°

- 11. In which quadrant(s) do sine and cosine have the same sign?
- 12. In which quadrant(s) do sine and cosine have the opposite sign?
- 13. In which quadrant(s) do sine and tangent have the same sign?
- 14. In which quadrant(s) do sine and tangent have the opposite sign?
- 15. In which quadrant(s) do cosine and tangent have the same sign?
- 16. In which quadrant(s) do cosine and tangent have the opposite sign?

For Exercises 17-21, find the reference angle for the given angle.

17. 317°

18. 63°

19. −126°

20. 696°

21. 275°

For Exercises 22-26, find the exact values of $\sin \theta$ and $\tan \theta$ when $\cos \theta$ has the indicated value.

23. $\cos \theta = -\frac{1}{2}$ **24.** $\cos \theta = 0$

25. $\cos \theta = \frac{2}{5}$

For Exercises 27-31, find the exact values of $\cos \theta$ and $\tan \theta$ when $\sin \theta$ has the indicated value.

27. $\sin \theta = \frac{1}{2}$

28. $\sin \theta = -\frac{1}{2}$ **29.** $\sin \theta = 0$

30. $\sin \theta = -\frac{2}{3}$

31. $\sin \theta = 1$

For Exercises 32-36, find the exact values of $\sin \theta$ and $\cos \theta$ when $\tan \theta$ has the indicated value.

32. $\tan \theta = \frac{1}{2}$

33. $\tan \theta = -\frac{1}{2}$ **34.** $\tan \theta = 0$ **35.** $\tan \theta = \frac{5}{12}$ **36.** $\tan \theta = 1$

C. Trigonometric Identities

For Exercises 2 and 3, find the exact values of $\sin(A+B)$, $\cos(A+B)$, and $\tan(A+B)$.

- **2.** $\sin A = \frac{8}{17}$, $\cos A = \frac{15}{17}$, $\sin B = \frac{24}{25}$, $\cos B = \frac{7}{25}$ **3.** $\sin A = \frac{40}{41}$, $\cos A = \frac{9}{41}$, $\sin B = \frac{20}{29}$, $\cos B = \frac{21}{29}$
- 4. Use $75^{\circ} = 45^{\circ} + 30^{\circ}$ to find the exact value of $\sin 75^{\circ}$.
- 5. Use $15^{\circ} = 45^{\circ} 30^{\circ}$ to find the exact value of tan 15° .
- **6.** Prove the identity $\sin \theta + \cos \theta = \sqrt{2} \sin (\theta + 45^{\circ})$. Explain why this shows that

$$-\sqrt{2} \le \sin \theta + \cos \theta \le \sqrt{2}$$

for all angles θ . For which θ between 0° and 360° would $\sin \theta + \cos \theta$ be the largest?

For Exercises 7-14, prove the given identity.

- 7. $\cos(A+B+C) = \cos A \cos B \cos C \cos A \sin B \sin C \sin A \cos B \sin C \sin A \sin B \cos C$
- 8. $\tan(A+B+C) = \frac{\tan A + \tan B + \tan C \tan A \tan B \tan C}{1 \tan B \tan C \tan A \tan C \tan A \tan B}$
- 9. $\cot(A+B) = \frac{\cot A \cot B 1}{\cot A + \cot B}$
- 10. $\cot(A-B) = \frac{\cot A \cot B + 1}{\cot B \cot A}$

ANSWERS:

A: 1. 102.7 ft **3.** 241.1 ft **4.** 274 ft

1. QII 3. QIV 5. negative y-axis **B**: 7. QIII 9. QIV 11. QI, QIII 13. QI, QIV 15. QI, QII 17. 43° 19. 54° 21. **23.** sin $\theta = \sqrt{3}/2$ and tan $\theta = -\sqrt{3}$; $\sin \theta = -\sqrt{3}/2$ and $\tan \theta = \sqrt{3}$ **25.** sin $\theta = \sqrt{21/5}$ and tan $\theta = \sqrt{21/2}$; $\sin \theta = -\sqrt{21/5}$ and $\tan \theta = -\sqrt{21/2}$ **27.** $\cos \theta = \sqrt{3}/2 \text{ and } \tan \theta = 1/\sqrt{3};$ $\cos \theta = -\sqrt{3}/2$ and $\tan \theta = -1/\sqrt{3}$ **29.** $\cos \theta = \pm 1$ and $\tan \theta = 0$ **31.** $\cos \theta = 0$ and $\tan \theta$ is undefined **33.** $\sin \theta = 1/\sqrt{5} \text{ and } \cos \theta = -2/\sqrt{5};$ $\sin \theta = -1/\sqrt{5}$ and $\cos \theta = 2/\sqrt{5}$ **35.** $\sin \theta = 5/13 \text{ and } \cos \theta = 12/13;$ $\sin \theta = -5/13$ and $\cos \theta = -12/13$

C: 3. $\sin{(A+B)} = \frac{1020}{1189}$, $\cos{(A+B)} = -\frac{611}{1189}$, $\tan{(A+B)} = -\frac{1020}{611}$ 4. $(\sqrt{6} + \sqrt{2})/4$ 5. $2 - \sqrt{3}$ 15. Hint: For $a \neq 0$ and $b \neq 0$, draw a right triangle with legs of lengths a and b.