1.9 GEOMETRY ON THE PLANE (3) – TRIGONOMETRY THEORY

1. Definitions:

Consider a right triangle $\triangle ABC$, with the right angle at C and with lengths a,b, and c, as in the figure on the right. For the acute angle A, call the leg BC its **opposite side**, and call the leg AC its **adjacent side**. Recall that the hypotenuse of the triangle is the side AB. The ratios of sides of a right triangle occur often enough in practical applications to warrant their own names, so we define the six **trigonometric functions** of A as follows:

Name of function	Abbreviation		Definition		
$\mathrm{sine}\ A$	$\sin A$	=	$\frac{\text{opposite side}}{\text{hypotenuse}}$	=	$\frac{a}{c}$
$\mathrm{cosine}\ A$	$\cos A$	=	$\frac{\text{adjacent side}}{\text{hypotenuse}}$	=	$\frac{b}{c}$
$\operatorname{tangent} A$	an A	=	$\frac{\text{opposite side}}{\text{adjacent side}}$	=	$\frac{a}{b}$
$\operatorname{cosecant} A$	$\csc A$	=	$\frac{\text{hypotenuse}}{\text{opposite side}}$	=	$\frac{c}{a}$
$\operatorname{secant} A$	$\sec A$	=	$\frac{\text{hypotenuse}}{\text{adjacent side}}$	=	$\frac{c}{b}$
$\mathrm{cotangent}A$	$\cot A$	=	$\frac{\text{adjacent side}}{\text{opposite side}}$	=	$\frac{b}{a}$

2. Trigonometric functions of $30^{\circ} 45^{\circ} 60^{\circ}$ angle

	0°	30°	45°	60°	90°
sen	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tg	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞
cotg	00	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

3. Trigonometric Functions of Any Angle

To define the trigonometric functions of any angle - including angles less than 0° or greater than 360° - we need a more general definition of an angle. We say that an angle is formed by rotating a ray \vec{OA} about the endpoint O (called the vertex), so that the ray is in a new position, denoted by the ray \vec{OB} . The ray \vec{OA} is called the **initial side** of the angle, and \vec{OB} is **the terminal side** of the angle.

We denote the angle formed by this rotation as $\angle AOB$, or simply $\angle O$, or even just O. If the rotation is counter-clockwise then we say that the angle is **positive**, and the angle is **negative** if the rotation is clockwise. One full counter-clockwise rotation of \vec{OA} back onto itself (called a **revolution**), so that the terminal side coincides with the initial side, is an angle of 360° ; in the clockwise direction this would be -360° . Not rotating \vec{OA} constitutes an angle of 0° . More than one full rotation creates an angle greater than 360° .

We can now define the trigonometric functions of any angle in terms of **Cartesian coordinates**. Recall that the xy-coordinate plane consists of points denoted by pairs (x, y) of real numbers. The first number, x, is the point's x coordinate, and the second number, y, is its y coordinate. The x and y coordinates are measured by their positions along the x-axis and y-axis, respectively, which determine the point's position in the plane. This divides the xy-coordinate plane into four quadrants (denoted by QI, QII, QIII, QIV), based on the signs of x and y.

Now let θ be any angle. We say that θ is in standard position if its initial side is the positive x-axis and its vertex is the origin (0,0). Pick any point (x,y) on the terminal side of ? a distance r>0 from the origin. (Note that $r=\sqrt{x^2+y^2}$.) We then define the trigonometric functions of θ as follows:

$$\sin \theta = \frac{y}{r}$$
 $\cos \theta = \frac{x}{r}$ $\tan \theta = \frac{y}{x}$ $\csc \theta = \frac{r}{y}$ $\sec \theta = \frac{r}{x}$ $\cot \theta = \frac{x}{y}$

As in the acute case, by the use of similar triangles these definitions are well-defined (i.e. they do not depend on which point (x,y) we choose on the terminal side of θ). Also, notice that $|\sin\theta| \le 1$ and $|\cos\theta| \le 1$, since $|y| \le r$ and $|x| \le r$ in the above definitions.