
DIFFERENTIAL CALCULUS (2 )
DERIVATIVES

THEORY & PROBLEMS

1. VOCABULARY

(a) Derivative. The derivative of a function f at a number x0 is

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h

if this limit exists.

(b) Tangent Line An equation of the tangent line to y = f(x) at (x0; f(x0)) is given by

y − f(x0) = f ′(x0)(x− x0).

(c) Product and Quotient Rules If f and g are both di�erentiable, then

(fg)′ = f ′ · g + f · g′

and (
f

g

)′
=

f ′ · g + f · g′

g2

with g(x) 6= 0.

(d) Absolute Maximum and Minimum A function f has an absolute maxi- mum at c

if f(c) ≥ f(x) for all x ∈ D, the domain of f . The number f(c) is called the maximum

value of f on D.

A function f has an absolute minimum at c if f(c) ≤ f(x) for all x ∈ D, the domain of

f . The number f(c) is called the minimum value of f on D.

(e) Local Maximum and Minimum A function f has a local maximum at c if f(c) ≥ f(x)

for all x in an open interval containing c.

A function f has a local minimum at c if f(c) ≤ f(x) for all x in an open interval

containing c.

(f) Extreme Value Theorem If f is continuous on a closed interval [a; b], then f attains

an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers

cd,∈ [a; b].

(g) Fermat's Theorem If f has a local maximum or minimum at c, and f ′(c) exists, then

f ′(c) = 0.

(h) Critical Number A critical number of a function f is a number c in the domain of f

such that either f ′(c) = 0 or f ′(c) does not exist.

(i) Closed Interval Method To �nd the absolute maximum and minimum values of a

continuous function f on a closed interval [a; b]:

i. Find the values of f at the critical numbers of f in (a; b).

ii. Find the values of f at the endpoints of the interval.

iii. The largest of the values from Step 1 and Step 2 is the absolute maximum value;

the smallest of these values is the absolute minimum value.

(j) The First Derivative Test Suppose that c is a critical number of a continuous function

f .



i. If f ′ changes from positive to negative at c, then f has a local maximum at c.

ii. If f ′ changes from negative to positive at c, then f has a local minimum at c.

iii. If f ′ does not change sign at c, then f has no local minimum or maximum at c.

2. PROBLEMS

(a) Find the derivatives of the functions.

i. f(x) = 5x3 + 12x2 − 15

ii. f(x) = −4x5 + 3x2 − 5
x2

iii. f(x) = 5(−3x2 + 5x+ 1)

iv. f(x) = (x+ 1)(x2 + 2x− 3)

v. f(x) = x3(x3 + 5x+ 10)

vi. f(x) = (x2 + 5x− 3)(x5 − 6x3 + 3x2 − 7x+ 1)

vii. f(x) = x2−x−1
x+3

viii. f(x) = x3+5x2+2x−1
x3+x2+5x+1

(b) Find an equation for the tangent line to f(x) = x2−4
5−x at x = 3.

(c) Find an equation for the tangent line to f(x) = x−2
x3+4x−1 at x = 1.

(d) The curve y = 1
1+x2 is an example of a class of curves each of which is called a witch of

Agnesi. Sketch the curve and �nd the tangent line to the curve at x = 5.

(e) Find the derivative of the following function using the de�nition of the derivative f(x) =
x

x+1 .

(f) Is f(x) = 2x3 + 300
x3 + 4 increasing, decreasing or not changing at x = 2?

(g) A function is given by f(x) = 3x4 + 4x3 − 12x2. Find the coordinates of the stationary

points of f and determine their nature. For what values of x is the function increasing?

For what values of k will f(x) = 0 have no solution?

(h) An open-top box is to be made from a 24 in. by 36 in. piece of cardboard by removing

a square from each corner of the box and folding up the �aps on each side. What size

square should be cut out of each corner to get a box with the maximum volume?

(i) A rectangular box with a square base, an open top, and a volume of 216 in.3 is to be

constructed. What should the dimensions of the box be to minimize the surface area of

the box? What is the minimum surface area?
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